14,706 research outputs found

    The use of niobia in oxidation catalysis

    Get PDF
    This paper summarises the background to work carried out at the University of Twente on the use of niobia as a catalyst for the oxidative dehydrogenation of propane to propylene and discusses the development of promoted niobia catalysts for this reaction. Results are also presented which illustrate the use of niobia in catalysts for other reactions such as the oxidative coupling of methane, the oxidative dehydrogenation of ethane and the oxidative dehydrogenation of methanol. It appears that niobia and niobia-modified catalysts, when used in high-temperature oxidation processes, can exhibit relatively high selectivities compared with more conventional catalysts

    Effect of excess iron on oxidative dehydrogenation of 1-butene over a series of zinc ferrite catalysts

    Get PDF
    The influence of excess Fe3+ in ZnFe2O4 for the catalytic oxidative dehydrogenation of 1-butene to 1, 3-butadiene was investigated to try to clarify inconsistencies in the existing literature. A series of nanoscale zinc ferrite powders were produced with increasing Fe: Zn ratios. The materials were characterized by a range of techniques, which showed the presence of α-Fe2O3 as a distinct phase with an increasing excess of Fe3+ and SEM highlighted the increased presence of surface structures on the ferrites at higher Fe: Zn ratios. Reaction testing showed α-Fe2O3to be virtually inactive for the oxidative dehydrogenation of 1-butene. Results for the ferrite catalysts showed a significant decrease in both conversion and yield with an increasing excess of Fe3+. Therefore an excess of Fe3+ has a negative effect on catalytic activity and selectivity of zinc ferrite for the oxidative dehydrogenation of 1-butene, but acts as a promoter for competing hydrogenation and combustion side reactions

    Influence of the Pressure on the Product Distribution in the Oxidative Dehydrogenation of Propane over a Ga2O3/MoO3 Catalyst

    Get PDF
    The yields and selectivities in both the catalyzed and non-catalyzed oxidative dehydrogenation of propane were found to increase with increasing pressure. The results showed that the maximum yields of valuable ODH products could be obtained by adjusting only reactants' partial pressure, while keeping their ratio constant

    EFFECT OF METAL OXIDE ADDITIONS TO V-BASED COMPLEX OXIDE CATALYSTS ON OXIDATIVE DEHYDROGENATION OF BUT-1-ENE

    Get PDF
    Buta-1,3-diene (BD), one of the most important products in the petrochemical industry, is mainly produced through the endothermic steam cracking of naphtha. Recently, the oxidative dehydrogenation (ODH) of n-butene (n-C₄H₈) has emerged as an attractive alternative due to the energy savings it offers. The ODH of n-C₄H₈ is reportedly improved by the addition of V-based complex oxide catalysts. In this study, we added metal oxides to V-based complex oxide catalysts and examined the effects of this addition on the ODH of 1-C₄H₈. The addition of Mg and Co to the V-based complex oxides resulted in the highest BD yield of 22.5% with the lattice oxygen of the catalyst. Moreover, this catalyst also exhibited high ODH activity under an O₂ atmosphere

    Single-Site Vanadyl Species Isolated within Molybdenum Oxide Monolayers in Propane Oxidation

    No full text
    The cooperation of metal oxide subunits in complex mixed metal oxide catalysts for selective oxidation of alkanes still needs deeper understanding to allow for a rational tuning of catalyst performance. Herein we analyze the interaction between vanadium and molybdenum oxide species in a monolayer supported on mesoporous silica SBA-15. Catalysts with variable Mo/V ratio between 10 and 1 were studied in the oxidation of propane and characterized by FTIR, Raman, and EPR spectroscopies, temperature-programmed reduction, UV/vis spectroscopy in combination with DFT calculations, and time-resolved experiments to analyze the redox properties of the catalysts. Molybdenum oxide (sub)monolayers on silica contain mainly dioxo (Si–O−)2Mo(═O)2 species. Dilution of silica-supported vanadium oxide species by (Si–O−)2Mo(═O)2 prevents the formation of V–O–V bonds, which are abundant in the pure vanadium oxide catalyst that predominantly contains two-dimensional vanadium oxide oligomers. Existing single vanadyl (Si–O−)3V(═O) sites and neighboring (Si–O−)2Mo(═O)2 sites do not strongly interact. The rates of reduction in propane and of oxidation in oxygen are lower for single metal oxide sites compared to those for oligomers. The rate of propane oxidation correlates with the overall redox rates of the catalysts but not linearly with the chemical composition. Retarded redox behavior facilitates selectivity toward acrolein on single-site catalysts. The abundance of M–O–M bonds is more important in terms of activity and selectivity compared to the nature of the central atom (molybdenum versus vanadium)

    Influence of preparation method on the performance of vanadia-niobia catalysts for the oxidative dehydrogenation of propane

    Get PDF
    The influence of various preparation methods on the performance of V-Nb-0 catalysts has been investigated. It was found that the activity and selectivity of a vanadium site depend on the nature of the neighbouring atoms. Vanadium neighbours provide activity, while niobium neighbours provide selectivity. Careful preparation of these catalysts ensures a homogeneous distribution and good mixing of the vanadium and niobium. It was also found that the vanadium becomes mobile upon reduction and this results in better distribution of vanadium in used catalysts

    The conversion of citrulline to arginine in kidney

    Get PDF
    Glycocyamine is formed in the kidney by the transfer of the amidine group of arginine to the nitrogen atom of glycine. In the study of this reaction it was observed that glycocyamine was also formed from citrulline and glycine. No other donor or precursor of the amidine group was found (1)
    corecore